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Abstract. This paper proposes a method of voxel-wise hemodynamic
response function (HRF) estimation using sparsity and smoothing con-
straints on the HRF. The slow varying baseline drift at the voxel time-
series is initially estimated via empirical mode decomposition (EMD).
This estimation is refined by two-stage optimization that estimates HRF
and slow-varying noise iteratively. In addition, this paper proposes a
novel method of finding voxel activation via projection of voxel time-
series on signal subspace constructed using the prior estimates of HRF.
The performance of the proposed method is demonstrated on both syn-
thetic and real fMRI data.
Keywords- functional MRI, Hemodynamic Response Function,
Activation detection.

1 Introduction

Blood oxygen-level dependent (BOLD) functional magnetic resonance imaging
(fMRI) is a non-invasive method to analyze human brain activity under differ-
ent tasks such as visual, hearing, cognitive, etc [1]. It relates the neural activity
with the temporal impulse response which is known as hemodynamic response
function (HRF). In this manner, HRF is a proxy measure of underlying neuronal
activity in brain. HRF not only varies across multiple subjects, but also in dif-
ferent regions of the brain of a single subject. HRF estimation can play a crucial
role in estimating brain voxels activity accurately.

In the literature, HRF estimation has been done by two approaches: via
region-based approach and via voxel-based approach [2]. In the region-based
approach, regions of interest (ROIs) are extracted by either assuming equally
sized regions [3] or via parcellation algorithm [4]. It is assumed that the HRF is
same in all the voxels of a region. Hence, the mean of fMRI signal in the ROI is
considered for HRF estimation. But, in actual scenario, some voxels may have
different HRF within that ROI. Thus, estimated HRF may be suboptimal. In
order to overcome the above shortcoming, various methods of voxel-based HRF
estimation have been proposed in the literature [5-6]. Here, HRF is assumed to
vary across different voxels. However, due to poor signal-to-noise ratio of fMRI
time series, HRF estimates may be potentially misleading. Smoothing in the
pre-processing stage can overcome this problem.



In addition to the above classification, there are parametric and nonpara-
metric methods of HRF estimation. In the parametric methods, shape of HRF is
assumed to be known apriori. However, single nonlinear function is not accurate
to model HRFs across the entire brain. Nonparametric methods of HRF esti-
mation do not restrict the shape of HRF and estimate HRF at each time point
[5]. In [5], general linear model (GLM) is applied on each voxel to characterize
voxel activity via best linear combination of the predictors [5]. The nonparamet-
ric method in [6] imposes sparsity constraint on HRF in time-domain. However,
sparsity of HRF may be better modeled in the wavelet-domain as compared to
the time-domain. In order to account for HRF variability across ROI, this paper
considers voxel-based nonparametric approach for HRF estimation. Our method
does not require priors on the parameters of HRF. A consistent voxel-wise HRF
estimation along with sparsity and smoothing constraint is proposed in this pa-
per. Additionally, estimated HRFs in a region are used to form signal subspace
and projection of voxel time-series onto this signal subspace is used for robust
detection of active seed voxel in the ROI.

This paper is organized as follows. Section 2 describes the fMRI time series
model. Section 3 describes the proposed HRF estimation method. This section
also presents the proposed method of voxel activation detection via subspace
modeling. Simulation results on both simulated and real fMRI data are presented
in Section 4. In the end, conclusions are presented in section 5.

Notations: We use lower case bold letters for vectors, upper case bold letters
for matrices, and lower case italics letters for scalars.

2 Preliminaries
This section presents a brief background on fMRI signal time series and EMD.

2.1 Cerebral Hemodynamic Response Function

The BOLD fMRI signal is captured via T∗
2 weighted imaging via MR scanner.

Let us consider that M no. of brain volumes, at time instants tj where j =
1, 2, ...,M have been captured during an fMRI experiment. The intensity of a
particular voxel Vi in the scanned brain volumes can be represented as a time-
series yi = [yi,1, yi,2, · · · , yi,M ]. This signal characterizes the BOLD time-series
or signal at a particular voxel in brain.

In general, an fMRI signal is comprised of a) an activity-induced signal mod-
eled as convolution of stimulus function with HRF of that region, b) a slow
varying noise component, also called as baseline drift, and c) noise that is gen-
erally assumed to be additive white Gaussian noise (AWGN) for the sake of
simplicity [6]. In other words, we can write

yi = Shi + fi + ξi. (1)

where S is M x L convolution matrix consisting of known lagged stimulus covari-
ates. S depends on experimental design and is independent of voxel position. hi

is the amplitude of L-length HRF at voxel Vi, fi is the M -time point baseline drift



at voxel Vi, and ξi is the vector of M -length AWGN with ξi ∈ N(0, σ2I). This
model does not assume any apriori shape of HRF. The baseline drift represented
by fi = [fi,1, fi,2, · · · , fi,M ] is assumed to be independent of the experimental
design matrix S. This is to note that, in general, experimental paradigms in
fMRI are constructed with single stimulus paradigm as considered in this paper
to determine activated regions to build functional connectivity maps. However,
the framework can be extended to multiple stimulus (say two) as below:

yi = α1S1hi + α2S2hi + fi + ξi. (2)

where S1 and S1 are two different stimuli and α1 and α2 are the associated con-
stants. However, for this framework, fMRI experiment data has to be captured
for two different stimuli one by one in different time slots in the same session.

2.2 Empirical Mode Decomposition

Empirical mode decomposition (EMD) is an adaptive data driven approach that
decomposes any nonlinear and non-stationary signal such as biomedical signals
into amplitude and frequency modulated (AM-FM) components [7]. These func-
tions are also called as intrinsic mode functions (IMFs) [7]. These IMFs are
linearly independent of each other and capture the oscillations (or modes) that
are intrinsically part of the given signal [7]. In general, the estimated IMFs are
in the order of decreasing frequency. Thus, the first IMF corresponds to the high
frequency oscillations, while the last IMF has the slow varying component. In
general, signal f [n] can be represented using IMFs as below:

f [n] =

Q∑
k=1

dk[n] + rQ[n] (3)

where Q = total number of IMFs, dk[n] for k = 1, ..., Q are the IMFs, rQ[n] is the
last IMF, and stopping criterion defined in the EMD algorithm terminates the
iterative procedure providing all IMFs. Currently, this method is being applied
in various applications including biomedical, geological time-series analysis, etc.
[7, 8].

3 Proposed Estimation of HRF and Voxel Activation

3.1 Proposed HRF Estimation Method

The time-series at a voxel Vi is represented as given in (1). In this equation,
there are two unknowns: the HRF hi and the slow varying baseline drift fi. In
the literature, the theoretical shape of the HRF is assumed to be the one shown
in Fig. 1(a) [3].

From Fig. 1(a), we draw the following assumptions on HRF:

A1) HRF is a smooth function over time. Thus, we can apply the Tikhonov
regularisation technique for incorporating a smoothness constraint on the



Fig. 1. (a):Theoretical shape of HRF; (b) Scaling function of db4

HRF [4]. This implies that the minimization of l2 norm of Dhi can be used
as a constraint, where D is the second difference matrix operator given as:

D =

2 −1 0 . 0 0 0
−1 2 −1 0 . 0 0
0 −1 2 −1 0 . .
0 0 . . . . .
. . . . 2 −1 0
0 . . . −1 2 −1
0 0 . 0 0 −1 2

A2) Refer to Fig. 1(b) that shows the shape of the scaling function corresponding
to the orthogonal wavelet Daubechies-4 (or db4 ). This shape is very similar
to the theoretical HRF shape shown in Fig. 1(a). From these two figures, it
is obvious that if HRF is analyzed via db4, it will be sparse in the wavelet do-
main. Thus, we assume that Whi is sparse, where W is the matrix operator
corresponding to db4.

Using the above assumptions, we formulate the problem of HRF estimation,
mathematically, using Lagrangian multiplier method as below:

ĥi = argmin
hi

‖yi − Shi − fi‖2 + λ1 ‖Dhi‖2 + λ2 ‖Whi‖1 + λ3 ‖fi‖2 (4)

where λ1, λ2, and λ3 are the Lagrangian multipliers or regularization parameters.
In (4), baseline drift is also unknown. In order to solve this problem, we carry

out optimization in two stages, wherein we solve for ĥi and f̂i iteratively with

the first iteration estimate f̂
(1)

i drawn as the last IMF of EMD decomposition.

The pseudo code for the estimation of ĥi is provided in Table-1. This is to note
that optimization is carried out in CVX, a package for specifying and solving
convex programs [8].

3.2 Proposed Voxel Activation Detection via Subspace Modeling

In order to estimate voxel activation, we formulate the following strategy. First,
we estimate HRF at N no. of voxels with significant magnitude in the activity
sensitive region using Algorithm-1. Within a region, the shape of HRF is some-
what similar, hence, we construct the signal subspace using estimated HRFs in
that region. To this end, we use the projection operator based approach. First,
we convolve each of these N no. of HRFs with the stimulus function s(n) of
length M (no. of brain scan volumes) as below:

xi = xi[n] = s[n]⊗ hi[n] =

L−1∑
k=0

hi[k]s[n− k] (5)
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Tikhonov regularisation matrix D (size L x L) 
Daubechies-4 matrix W (size L x L) 
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where n = 0, 1, · · · ,M−1 and i = 0, 1, · · · , N−1. Next, we assume that these N
no. of vectors xi form the basis vectors of signal subspace χ and stack these into
the columns of matrix X of size (M x N ). We compute the projection matrix
(operator) PX corresponding to the signal subspace χ as below [9]:

PX = X(XTX)−1XT (6)

where PX is a symmetric and idempotent projection matrix. Since this signal
subspace has been constructed from the estimated HRFs of the voxels with
significant magnitude, this space will not be influenced largely with AWGN
noise and the baseline drift. Now, this projection matrix PX is used to project
a detrended voxel time series yk onto signal subspace χ as below:

wk = PXyk (7)

for k = 0, 1, · · · , p − 1 where p corresponds to the no. of voxels in the activity-
sensitive region of the brain. The norm of vectors wk are computed for all p
voxels. The voxel with the highest norm is labeled as the seed voxel of this region.
This approach will take care of any inhomogeneity left in the neighborhood even
after motion correction, removal of drift noise, etc. that might confound seed
voxel. Voxels with norm greater than the threshold γ are declared as active
voxels, i.e.,

Declare Vk = active if norm(wk) > γ (8)



4 Validation of the Proposed Method

In this section, we test the proposed joint method of HRF estimation and acti-
vation detection on the synthetic and real fMRI data.

4.1 Results on Synthetic fMRI Data

We generated a synthetic fMRI time series by convolving the stimulus function
with the canonical HRF. Our canonical HRF of length L=20 is constructed using
the difference of two gamma functions [4]. The plot of HRF h[n] is shown in Fig.
2(a). We generated 200 time points of the synthetic BOLD fMRI signal as below:

Fig. 2. (a): Synthetic HRF h[n]; (b) Estimated HRF ĥi using Algorithm-1

y ≡ y[n] = s[n]⊗ h[n] + ξ[n] (9)

Since we used real data with block-stimulus experiment design, we generated
synthetic data with the same experimental paradigm. In the block experiment,
block of 60s is generated with 30s on and 30s off time. Additive white Gaussion
noise is generated with variances 0.75, 0.5, 0.25, 0.1, and 0.05. For computing
the mean square error (MSE), 500 Monte Carlo cycles have been performed over
voxel time-series (i.e., considering 500 different realizations of noise time-series).
MSE between the canonical and estimated HRF is calculated as below:

MSE =
1

500

500∑
k=1

[
1

L

L−1∑
n=0

(ĥk[n]− hk[n])2

]
(10)

Since we did not corrupt the synthetic data with the slow varying baseline
drift, only HRF was required to be estimated using Algorithm-1. The estimated
HRF for noise variance σ2 = 0.1 and with regularization parameters of λ1 = 1
and λ2 = 0.2 (determined empirically) is shown in Fig. 2(b).



The results of proposed algorithm are compared with the method of [6] and
tabulated in Table-2. In [6], sparsity on HRF is imposed in the time-domain,
while based on the shape and our discussion in Section 3.1, we find it more
appropriate to consider sparsity of HRF in the wavelet-domain. In addition,
we have imposed smoothness constraint on HRF that was not imposed in [6].
From Table-2, we observe that the proposed method with both smoothing and
wavelet-domain sparsity constraint outperforms [6].

4.2 Results on Real fMRI Data

For testing the proposed framework on real fMRI data, we utilized the block de-
sign paradigm based auditory fMRI dataset available at SPM website [10]. This
auditory dataset consists of acquisitions of 64 contiguous slices with 64x64x64
voxels of voxel size 3x3x3 mm3. It contains 96 time points (or 96 acquisitions)
with repetition time of 7s. Pre-processing of this data has been carried out us-
ing SPM8 toolbox with the procedure as outlined specifically for this dataset
in Chapter 28 of SPM8 manual [10]. Pre-processing steps include realignment
(with the first scan for removal of motion artefact), co-registration (with the
mean fMRI scan generated in the step of realignment), normalisation (with the
MNI atlas), and smoothing (using a 6mm full width at half maximum (FWHM)
Gaussian kernel). These steps provided 96 brain volumes of 79x95x68 voxels
each. First 12 scans were discarded, resulting in 84 brain volumes. Subject was
given stimulus starting with the condition of rest, auditory, rest, and so on.

In general, Brodmann regions 22, 40, 41 are found to be associated with
the auditory stimulus. We have tested the proposed methodology on Brodmann
region 22. We extracted this ROI (Z) using WFU Pickatlas Tool [11]. Total 1720
voxels were extracted from this ROI. Next, we estimated HRF at 10 voxels with
the highest norm, out of which 2 HRFs are shown in Fig. 3(a). The regularization
parameters of λ1 = 1, λ2 = 0.2 (same as used for synthetic data) and λ3 = 0.1
were used in the optimization routine for HRF estimation.

Fig. 3. (a): Estimated HRF estimated using Algorithm-1 on voxel positions ([65,41,27]-
solid line;[65,42,26]-dotted line); (b) Active Seed Voxel [65,42,25]

Next, we constructed the projection operator using the estimated HRFs at
30 highest norm voxels as discussed in Section 3.2, projected the de-trended



time-series yk of all the voxels p of region Z using (7). Thereafter, we computed
norm of vectors wk of all p voxels. In the end, we declare the voxel with the
highest norm as the seed voxel of activity-specific region Z. The coordinates of
seed voxel on MNI frame of reference are found to be [65,42,25], and is shown
on a 10mm diameter in Fig. 3(b). The position of seed voxel was validated by
the radiologist.

5 Conclusion

In this paper, we have presented a joint method of voxel-wise hemodynamic
response function (HRF) estimation and voxel activation detection. We removed
the slow varying baseline drift using EMD along with the constraint optimization
using sparsity on HRF in the wavelet-domain and smoothness of HRF in time-
domain. This estimation is refined by two-stage optimization that estimates HRF
and slow-varying noise iteratively. In addition, we propose a novel method of
finding active seed voxel via projection of voxels time series on signal subspace
constructed using the estimates of HRF. Since the proposed framework estimates
HRF voxel-wise instead of region-wise, the determination of seed voxel in a region
will be more accurate.
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